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It is proposed that the number of p-particle, k-bond lattice gas cluster configura- 
tions is of the form exp{apf(k/p)} in the limit p---,x oe. A simple modification 
permits application to finite clusters, with the consequence that asymptotically 
the cluster partition function is of the droplet form, i.e., Z e = exp[xp- 
ttpl-1/d+ O(ln p)]. The scaling function for two-dimensional lattices is deter- 
mined numerically and is found to be qualitatively universal. The scaling theory 
is used to investigate the size dependence of the surface free energy. The surface 
tension of small clusters can significantly exceed its limiting value. For interme- 
diate cluster sizes (~100 particles) there is a modest reduction in surface 
tension, in accord with Tolman's prediction and the results of recent Monte 
Carlo studies. 

KEY WORDS: Clustering; nucleation; surface tension; statistical geome- 
try. 

1. I N T R O D U C T I O N  

Physical  c lus t e r s - - aggrega te s  of par t ic les  b o u n d  by  an  a t t rac t ive  po ten t ia l  
~ h a v e  long been  of interest  in s tat is t ical  mechanics .  Knowledge  of the 
proper t ies  and  size d is t r ibu t ion  of clusters is centra l  to the theory  of 
condensa t ion  and  metas tabi l i ty ,  and  is essential  for pred ic t ing  the nucle-  
a t ion  ra te  in a supersa tu ra ted  vapor .  (1'2) Hill(3) fo rmula t ed  an  expans ion  of 
the pa r t i t ion  func t ion  in terms of phys ica l  clusters. S t rogyn a n d  Hirsch-  
fe lder  (4) eva lua ted  the d imer  cont r ibu t ion ,  a n d  Zurek  and  Schieve (5) and  

de  la Selva et  al. (6) eva lua ted  the tr imer,  te t ramer ,  and  p e n t a m e r  cont r ibu-  
t ions for  the ha rd  core  square  well model .  As  with the U r s e l l - M a y e r  theory  
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which it closely parallels, the rigorous theory of Hill becomes nearly 
intractable for clusters of more than a few particles, owing to the number 
and complexity of the integrals encountered. In nucleation theory recourse 
is often made to a quasithermodynamic approach(7~: the free energy is 
estimated by treating the cluster as a spherical droplet with bulk and 
surface free energy densities characteristic of a macroscopic sample of the 
fluid. Since the critical cluster is generally quite small (10-1000 particles), 
the accuracy of this "capillarity approximation" is questionable. (2'8~ Indeed, 
the inadequacy of the capillarity approximation is responsible for the 
discrepancy (sometimes many orders of magnitude) between observed and 
predicted nucleation rates. (z) Within the context of the droplet picture, the 
error in the cluster free energy estimate may be interpreted as a symptom of 
a size-dependent surface tension. This issue has been investigated for 
several models, (9-11) but conclusive answers are still lacking. 

It would, of course, be most desirable to calculate cluster partition 
functions ab initio, given the intermolecular potential, thereby avoiding 
macroscopic approximations or assumptions about cluster shapes. Such 
calculations have been performed for argon clusters at low temperatures. (12) 

In view of the difficulties inherent in the microscopic theory of clusters 
for realistic models, it is natural to turn to the study of clusters in the lattice 
gas. Aside from relative simplicity, the lattice gas offers many recognized 
advantages. The bulk phases are well understood on the basis of exact 
results and/or  series expansion, renormalization group, and Monte Carlo 
studies. Despite obvious oversimplifications, the model appears to capture 
the essential features of liquid-vapor phase transitions. Comparison be- 
tween theory and (computer) experiments is detailed and clear-cut: ques- 
tions which usually complicate the interpretation of nucleation experiments 
(replacement free energy, (8'13~ ambiguities in bond definition) do not arise. 
Metastability, clustering, and nucleation in the lattice gas have been studied 
by Penrose and Lebowitz, (14~ who established rigorous bounds on cluster 
free energies, and by Domb, (~5~ who examined the analytic properties of a 
modified droplet model. (16) Among the extensive Monte Carlo simulations 
of the lattice gas conducted by Binder and his co-workers (~7~ are a number 
of studies of cluster properties and of cluster growth dynamics. In a recent 
study Binder and Kalos (18~ examined the size dependence of the surface 
free energy. 

In this paper we calculate cluster partition functions for the lattice gas. 
Configurations of small clusters may be exhaustively enumerated, permit- 
ting an exact evaluation. For larger clusters it is necessary to estimate the 
number of configurations with a given number of particles and bonds. The 
importance of this combinatorial problem in the present context seems first 
to have been recognized by Domb. (~5~ Our main result is a scaling law 
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governing the number of cluster configurations. The scaling function ap- 
pears to be essentially universal for two-dimensional lattices. In addition to 
shedding light on an intriguing problem of statistical geometry, the theory 
leads to interesting predictions regarding cluster free energies. In an earlier 
paper (19) we presented numerical evidence for a scaling law governing the 
number of cluster configurations in a weak-embedding model. Here we 
study strong-embedding clusters, i.e., the Ising model. In Section 2 we 
propose an asymptotic scaling law and consider its extension to finite 
clusters. Extensive numerical evidence for scaling, largely the result of a 
new Monte Carlo cluster generation technique, is presented in Section 3. In 
Section 4 we examine some of the consequences relevant to nucleation 
theory, and compare our predictions with the results of simulations by 
Binder and Kalos (]8) and Nishioka. (9) 

2. SCALING THEORY OF LATTICE GAS CLUSTERS 

We consider a cluster--a set of occupied sites connected by nearest- 
neighbor bonds--in a lattice gas with attractive potential - e. The partition 
function for a p-particle cluster may be written 

= E (1) 
X I N(X)=p 

where J / /  is the number of lattice sites, 2 ~=  e x p ( c / k B T ) ,  and the sum 
includes exactly one representative from each class of translationally equiv- 
alent p-particle cluster configurations. The number of bonds in configura- 
tion X is indicated by k ( X ) .  Grouping terms according to the number of 
bonds, we have 

k~(p) 
2~p = J U Z  e = JU E ~k~ (2) 

k = p -  1 

The upper limit for the square lattice is 

kin(p) = [2(p - ~/p)] (3a) 

while for the triangle lattice, (24) 

k,, ,(p) = [3p - (12p - 3) '/2 ] (3b) 

where [ ] indicates the largest integer of its argument. In general, 

km(p)  ~ q p / 2  - X p  ' -  l/d (4) 

2 We assume that #U is large so boundary effects may be ignored. 
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for large p in d dimensions, where q is the coordination number and X a 
constant which depends on the lattice. In Eq. (2), op, k is the number of 
p-particle, k-bond duster configurations. The quantity ksp-l ln  op, k is there- 
fore the entropy density for configurations with internal energy density 
- k ~ / p .  The main idea of this section is that the entropy density may be 
expressed as a function of the energy density. 

Penrose and Lebowitz (14) established a lower bound on the cluster free 
energy density, - k  s Tp-lln Zt,. We show in Appendix A that the sequence 
(2np)-llnZ2~ converges to a limit as n o  oo. In Appendix A we also 
demonstrate the inequality 

Let 

02p,2k-1 ~ (Op,k- 1) 2 (5) 

x, =(np)-  ' ln one,,k _ 1 (6) 

Iterating Eq. (5), we see that the subsequence x2, increases monotonically 
with n. Using the Peierls construction ~23) one may place a constant upper 
bound on p - l l n (~oe ,k ) ,  hence on Xm, and so the subsequence x2~ con- 
verges. This makes it quite plausible that the sequence x n has a limit, an 
assumption we now adopt. By this assumption, the limit, as p o ~ ,  and 
k o ~ ,  with the ratio (k + 1)/p held constant, of p - q n  oe, k exists. Then for 
large p, 

= p f (  k + 1 In ap,k ) + o(p) (7) 
- 7  

Using the inequality (proved in Appendix A), 

02p,k >/ Op,k,Op,k_k,_ 1 (8) 

and Eq. (7) in the limit of large p, we find 

f (z) >1�89 f (z + y) + f ( z -  y)] (93 

where z = (k + 1)/2p a n d y  = (k - 2k' - 1)/2p. Equation (9) suggests that 
f is concave (and thereby continuous) on the interval [1, q/2), properties 
we shall henceforth assume. Under the continuity assumption Eq. (7) 
simplifies slightly to 

,no. 

in the limit p o m .  It is convenient to introduce a scaled bond number 

( k / p ) -  1 
; - -  ( q / 2 ) -  1 (11) 
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Equation (10) may then be put in the form 

lnoe, k = opf(Y) + o(p) (12) 

where o is a constant chosen so that f attains a maximum value of 1. 
We now consider the extension of the scaling hypothesis to include the 

cluster surface. We shall attempt to account for surface effects by modify- 
ing the scaling variable Y. In the square lattice (an analogous construction 
can be made for any other lattice), the configurations with the maximum 
number of bonds per particle form the sequence 

i i  
withp  = p * ( n ) =  n 2 and k = k*(n)= 2n(n - 1) (n = 1,2,3 . . . .  ). For each 
n there is a unique p*-particle, k*-bond cluster configuration, and so 
Op.,g. = 1 for each n. If we write 

op,g = exp{ opf[ x (p ,k )  ] ) (13) 

then we must have x(p*, k*) = x*, where f(x*) = 0. (We assume that the 
scaling function has a single zero in the region of interest.) The simplest 
generalization of Eq. (l l) which always takes the same value when p 
= p*(n) and k = k*(n) is 

k - p  + 1 (14a) 
x ( p , k )  - P _ + l 

Then x ~ [0, 1], x(p,p-  1)= 0, and x * =  1. Note that as p ~ o o  and 
k ~  oo with k / p  fixed, x(p ,k )~ .~(p ,k ) .  The condition x(p*,k*)= x* is 
also satisfied by 

k - p + l  
p -  2p r + 1 

so long as ~ ( p , k ) ~  1/2 when k--> kin(p). We will see that the surface free 
energy of a p-mer grows as pC. While the cluster surface area grows as 
pl - l /a  at low temperature, there is probably a crossover (15) at a higher 
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temperature to a regime where ramified clusters (whose surface area grows 
~p) ,  dominate. However, the cross-over temperature is unknown, and the 
use of a variable surface exponent introduces a new level of complexity into 
the numerical analysis of scaling. We assume the surface energy of a p-mer 
grows as pl-l /a and adopt Eqs. (13) and (14a) as a working hypothesis, 
bearing in mind that some of our conclusions may be valid only at low 
temperatures. 

An argument similar to the one leading to Eq. (14a) gives 

x(p,k) = k - p  + 1 (14b) 
2p - (12p - 3) '/2 + 1 

for the triangle lattice, and to the general form 

k - p  + 1 (15) 
x ( p , k ) ~  q 'P-  XP1-1/a + 1 

for large p, where q ' =  q / 2 -  1. Equation (13) may be further generalized 
by replacing op with 

oo(p) = op - Oln p + e (16) 

This modification is necessitated by the asymptotic behavior 

at(P) ~ E  ~176 + b) (17) 
k 

with ~ ----- 1 in two dimensions, as shown by Sykes and Glen. (2~ In principle 
we could write Eq. (16) with 0 = O(x), but our present knowledge is not 
sufficient to determine whether 0 has any x dependence. It will turn out 
that the scaling form 

Op, k ~ -  exp[ Oo(p)f(x) ] (18) 

can fit the data very well, so that corrections due to x dependence of 0 are 
small. 

The scaling assumption yields a cluster free energy with bulk and 
surface terms, regardless of the precise form of f(x). Approximating Eq. (2) 
by an integral in the limit of largep, and using Eqs. (15), (16), and (18), we 
may write the partition function as 

Zp = ( q ' -  Xp- ' /a)p  
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where T* = k s T/e. Assume t h a t f  is differentiable and that g = ( f ' ) -  l (the 
inverse of df/dx) exists and is differentiable. Let Y be the point where the 
integrand takes its maximum, i.e., 

df x=~ = _ q,_  Xp-l /a + p-1 (20) 
-~x [ o - ( O l n p - c ) / p ] T *  

o r ,  

Y ( T * , p ) = g { -  q ' -XP-~ /d  +P-1 
[ o-_ ~01-~p ~ c ) -~]  T,  ) (21) 

Expanding Eq. (19) about this point, we find, for large p, 

lnZp = ~p - I..tpl-1/d + pp l -2 /d  + (1  - Of(.~))lnp + D + @-l/d (22) 

where 

x = o f (X)  + ( q ' 2  + 1 ) / T *  (23) 

/z = X~/T* (24) 

X 2 

P = 2or*2/"(ff) (25) 

and 

D = ef(~) - (1 - ~)/T* + �89 (26) 

and where ~(T*)=lim?~ooY(T*,p). Thus the cluster free energy, 
- k B Tin Zp, has the expected form for large p, and - k  s T~ is the bulk free 
energy per particle. We define the surface free energy of a p-mer as 

F;= -kBT( lnZ  p - xp)'-~ ksTizp'-'/d ( p ~ )  (27) 

At low temperatures the surface area Ap of a p-mer is proportional to 
pl-1/a, and may be written 

Ap = ~(p/p) '- ' /a (28) 

where p is the bulk number density in the cluster and ~ is a geometrical 
factor which depends on the equilibrium shape of a large cluster. The 
surface tension is 

ys = lim F~/A = (kBT/ ,~, )~p l - I / d  (29) 
p-q. oo P P 

The internal energy per particle is given by 

( k s r )  2 a 
u =  lim p-llnZp= -E(q '~+ l) (30) 

p-~oo c 0 T* 
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and the specific heat per particle is 

- - - -  ( 3 1 )  
c -  d T  q'kB dT* ~ dx2 x=x 

since g --- ( f ' ) -  1. The assumed concavity of f implies c >/0. Furthermore, 

d~r y <  0 (32) 
dx  2 

if, at the temperature T* for which ~(T*) = y, the specific heat is finite. If 
f ' =  0 in the interval (Xl,X2) (and is negative outside this interval), then 
there is a temperature T' such that ~ (T  '§  = Xl, and ~ ( T ' - ) =  x 2, so 
there is a first-order phase transition at T'. If f "  vanishes at an isolated 
point there is a second-order transition. For f ' ( ~ ) =  - q ' / o T *  to have a 
solution for all T*, i f ( x )  must diverge as x ~ I. If f ' (1) were finite, then for 
all T* less than some T~' > 0, ~ = 1, implying that the specific heat vanishes 
at T~, which is unphysical. We therefore expect that i f ( x )  ~ - ov as x ~ 1. 
Similarly, if the specific heat is to be nonzero at all finite (high) tempera- 
tures, i f ( x )  must vanish at some point in [0, 1). 

We have seen that the scaling hypothesis--which proposes a simple 
relationship between the cluster entropy and energy densities--is mathe- 
matically well motivated and leads to reasonable physical consequences. In 
the following section the scaling hypothesis is tested numerically. 

3. NUMERICAL EVIDENCE FOR SCALING 

We have made a detailed study of 6p,k for strong embeddings in 
two-dimensional lattices, using both exact enumeration and Monte Carlo 
techniques. As is well known, the exhaustive enumeration approach is 
limited to fairly small (p ~ 15) clusters, owing to the rapid proliferation of 
graph topologies. An important exception is the case of maximally bonded 
(or nearly maximally bonded) clusters, since their number is relatively 
small. Such clusters may be enumerated using a duality relation between 
lattice animals. We have generated "by hand" nearly complete tables of op, k 
for p ~< 9 for the triangle lattice and for p < 11 for square lattice embed- 
dings. 

A Monte Carlo program is used to determine op, k for p ~ 30. Our 
Monte Carlo cluster generation technique is a modification of a method 
proposed by Ziff. (21) With the origin initially occupied, a cluster is grown 
by "testing" the sites adjacent to it: each is occupied independently with 
probability z. Once all the neighbors of the origin have been tested, one of 
the newly occupied sites is chosen at random to serve as the next "testing 
site"--its nearest neighbors (those as yet untested) are tested in sequence. 
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Once all of the nearest neighbors of this site have been tested, a new testing 
site is selected from the set of occupied sites which have not yet served as 
testing site. The growth process ends as soon as p sites are occupied, or 
when no new testing site is available. (In this case the result is discarded 
and a new attempt to grow a p-mer is initiated.) The value of this technique 
is that it always generates a connected cluster with a specified number of 
points. 

It is shown in Appendix B that the quantity 

Sp, k = ~, w(r) (33) 
(p,k) 

(sum over all realizations of p-point, k-line clusters) converges to Aop, k, with 
A independent of k. In Eq. (33) the weight factor is 

w(r) = (1 - z) -u (34) 

where u is the number of sites tested and found unoccupied. 
The chief limitation of this Monte Carlo technique is its inability to 

generate compact (i.e., nearly maximally bonded) clusters when p ~ 25. By 
forcing the growth process to spiral outward from the origin, and by 
making z ----- 1, it is possible to generate many compact clusters. But then the 
denominator in Eq. (34) becomes very small, and large fluctuations render 
the results worthless. Clusters with kin(p), km(p)-  1, and in some cases 
kin(p)-2 bonds are enumerated by hand, but for p ~ 3 0  there is a 
significant gap in the results. In our calculations we used z = 0.45 for the 
triangle and square lattices, and z = 0.7 for the hexagon lattice. For each 
value of p we performed five runs, each involving 10 6 cluster realizations. 

A is eliminated from our results by noting that 

k 

and using accurate estimates of or(p) [Eq. (15)] obtained from the data of 
Sykes and Glen, (2~ as described in Appendix C. 

To analyze the scaling behavior of oe, k we define 

fp(x) = In Op,k/~o(p) (35) 

where 

Go(p) = lnop,K/j~ x(p, /~)]  (36) 

(/~ is the value of k which maximizes oe, k). If we replace f(x) with fe(x) and 
use Eq. (36) for Oo(p) then Eq. (16) is exact. Of course Eq. (36) requires that 
we knowf(x) .  But since f[x(p, k)] ~ 1 ( f '  vanishes near this point), we can 
use oo(p) = In op,~ as a very good first approximation. 

Based on the arguments of Section 2, we expect that f(x) E [0, 1], that 
f(1) -- 0, i f ( l )  = - oo, f'(Xo) = 0 for some x0 ~ [0, 1), and that f is concave 
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Table I. 

p y r/ x o 

Square lattice 

Triangle lattice 

15 0.68 + 0.04 1.51 _ 0.15 
20 0.65 0.04 1.38 0.1 
25 0.66 0.03 1.42 0.1 
30 0.67 0.03 1.43 0.1 
32 0.665 0.04 1.42 0. i 5 

0.033 + 0.02 
0.092 0.015 
0.81 0.015 
0.079 0.015 
0.082 0.025 

I0 0.56 + 0.08 1.31 ___ 0.2 0.134 ___ 0.03 
15 0.59 0.04 1.37 0.2 0.145 0.02 
19 0.59 0.05 1.34 0.1 0.154 0.015 
22 0.58 0.06 1.29 0.2 0.163 0.015 
25 0.61 0.06 1.35 0.2 0.163 0.02 

Hexagon lattice 24 0.7 _+ 0.02 1.40 + 0.05 
32 0.72 0.04 1.45 0.15 

0.0 -+ 0.015 
0.01 0.02 

.8 

.4 

~ v  

\ 

\ 
\ 

[ ]  i I i i I I I 

0 .4 .8 
X 

Fig. 1. fp(x) vs. x for the triangle lattice. Open circles, p = 10; solid circles, p = 15; squares, 
p = 19; diamonds, p = 22; triangles, p = 25. The solid line is Eq. (37) with the p = 19 best-fit 
parameters. (Error bars are smaller than or equal to the size of the symbols.) 
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and differentiable for x ~ [x01 ). A simple function with these properties is 

f(x)= - [iZXo 

with ~/> 1 and 0 < ~/< 1. Preliminary analysis offe(x ) fo rp  < 12 indicates 
that the data may be fit fairly well with ~/----- 1.5 and ~, ~ 2/3.  

To get precise estimates for x 0, 3', and r/, we find the set of parameters 
which, for a given p, minimizes the sum of the squares of the distances 
between the point_s fe(x ) and the curve_f(x). Included in the analysis are all 
points with k > k. (The regime k < k is of little physical interest.) The 
best-fit parameters 3 are given in Table I. 

The known values of fp(x) for the triangle lattice are plotted in Fig. 1. 
The solid line is given by Eq. (37) with the p = 19 best-fit parameters. 
Figure 2 is a similar plot for the square lattice using the p = 25 parameters. 

.8 

.4 

\ \  
%% 

J i i i ~ r i 

0 .4 .8 
x 

'\\ 
\ 

\ 
x 
\ \ 

Fig. 2. fe(x) vs. x for the square lattice. Open circles, p = 15; solid circles,/~ = 20; squares, 
p = 25; diamonds,  p = 30; triangles, p = 32. The solid line is Eq. (37) with the p = 25 best-fit 
parameters.  

3 The uncertainties in the best-fit parameters reflect variations over which the root-mean- 
square distance from f to the data points is less than or equal to twice its min imum value. 
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From Table I and the figures it is evident that (i) finite p scaling holds to 
very good approximation for p in the range of 20-32 in the square lattice, 
and for p = 15-25 in the triangle lattice; (ii) the scaling function f (x) ,  Eq. 
(37), fits the available data very well4; (iii) the exponents 7 and ~/are rather 
insensitive to lattice structure. To within the uncertainties of the estimates, 
~/is in fact lattice invariant. 

The form of the scaling function and the approximate "universality" of 
the scaling parameters reflect, we believe, some more fundamental com- 
binatorial-geometrical principle. While data for larger clusters will be 
required to determine f ( x )  to high precision, our results leave little doubt of 
the validity of the scaling theory. 

4. CLUSTER PROPERTIES 

In this section we consider some applications of the scaling theory of 
clusters. A prime motivation for the study of clusters derives from the 
theory of homogeneous nucleation of a l iquid-vapor phase transition. ~1'2) 
In the classical theory it is assumed that the free energy of formation of a 
cluster of p particles is given by 

A = ?:, g + , : : (p  / p) -1/  (38) 
where Ag is the difference in the bulk phase free energies (per particle) and 
y, is the surface tension. As has often been noted, ~2'5'6) this "capillarity 
approximation" is of doubtful validity for small clusters. Since even a 10% 
change in surface tension can alter the nucleation rate by orders of 
magnitude, the size dependence of the surface tension is of great interest. 

Consider the surface free energy per particle 

F s 
- P ( 3 9 )  

From Eqs. (22) and (26) we see that 

~p = ~ -  [ �89 l - 1 / d -  J)/p l / d -  o / p l - l / d " {  - O(1 /p )  ( 4 0 )  

for large p. To evaluate the parameters 0 and c we note that 

"-" eOP+b/p x ~ q'p fol ax exp[ (op - Oln p + c)f(x) ] OT(1)) 

~2q'pF(1/~l)~l- l (vaop)- l /nexp(op -- Olnp + c) (41) 

4 The error in the fit is typically about 0.5%. This error is not simply a result of numerical 
uncertainties, for lnoe, k is typically known to within about 0.1% (except in the range 
x = 0.7-0.9 where the Monte Carlo statistics are poor). 
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for large p, if f ( x )  is given by Eq. (37), and where a = (1 - x0) -~. Thus 

0 = )t + 1 - ~/- ~ (42) 

and 

c = b + T/-Iln(~,ao) - l n [2F(1 /~ / ) /~ / ]  (43) 

In two dimensions the leading correction to/~? for largep is due t o th e  term 
~ l n  p/~/p. Since 2~ ----- 1, and ~/--~ 1.4, O --- 1.29. The coefficient of In p/~/p in 
Eq. (40) is positive for T* < 0.47. f (2 )  decreases with T*, so this correction 
is most significant at fairly low temperatures. (However, when T--->0, 
F// , /? >. 2.) 

In the square lattice, the reduction in #e at T* = 0.25 is greatest for 
p = 120, where it amounts to about 1%; for T* = 0.5 the maximum reduc- 
tion is only about 0.1%. (The critical temperature of the square lattice gas is 
T~*--~ 0.5673.) The scaling theory predicts that for small p, #e is somewhat 
greater than its asymptotic value. T*#t , for square lattice clusters is plotted 
as a function of p for three temperatures in Fig. 3. The scaling theory 
parameters - /=  0.655, 77 = 1.4, and x 0 = 0.085 have been used. 

The size dependence of the surface tension is qualitatively similar for 
other two-dimensional lattices, and is not very sensitive to the details of the 
scaling function. In Ref. 20 we arrived at similar conclusions regarding the 
behavior of ~ for a weak-embedding model with a rather different form for 

f(x). 
The same qualitative behavior in /~? was found by Nishioka (9) to 

T~p 

1.9 

1.8 

1.7 

~ 1 4 9 1 7 6  �9 �9 �9 ~ ~ 1 7 6  ~ ~ ~ �9 �9 �9 �9 . . �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 a - ~ 

1 " 6 ~ 1 7 6 1 7 6 1 4 9  � 9  J � 9  J �9 e � 9  �9 �9 �9 �9 �9 �9 �9 �9 

0 0 
0 

C o 

D I  QO~  B 

lb , , , i - I  
10 2 10 3 10 4 

P 

Fig. 3. Surface free energy density, T'it?, calculated from the scaling theory, versus p, for 
three temperatures. Upper  set, T* --- 1//4; middle set, T* = 1//3; lower set, T* = 1//2./~(T*) is 
indicated by a horizontal line. 
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obtain in computer simulations of (three-dimensional) argon clusters: for 
small clusters there is a significant enhancement, and for large clusters a 
modest reduction in the surface tension. Again the small-p enhancement is 
more significant at high temperatures and the large-p reduction is more 
pronounced at lower T. 

Nishioka found that the data for/zp could be fit by functions of the 
form 

t~p = t~ - a / P  1/3 + b /P  2/3 (44) 

From Eq. (40) we see that in three dimensions, /~p = / ~ - v / p l / 3 +  
O l n p / p  2/3 so that the leading correction predicted by scaling theory 
agrees with the Tolman-like correction found by Nishioka. Note that all 
thermodynamically admissible scaling functions (i.e., f "  < 0) lead to v >/0, 
by Eq. (25). The parameter v, which is proportional to the specific heat, 
vanishes when T---> 0. As in the two-dimensional case we expect no Tolman 
correction for microcrystals. This is consistent with the results of Lee et 
al., 0~ who found no such correction for microclusters at low T. 

Tolman (22) gave a thermodynamic argument suggesting that the sur- 
face tension of a droplet of radius r would be smaller than its asymptotic 
value by a factor 

v,(r)/v,(oo) = 1/(1 + 28 / r )  (45) 

where 8 is the difference in the radii of two dividing surfaces--the Gibbs 
surface of tension and the surface of "vanishing superficial density." If 8 is 
independent of cluster size, the resulting correction is in accord with that 
found by Nishioka, and predicted by our theory. But if we carry over this 
assumption to two dimensions, we find 

1 - (46) 

which disagrees with the scaling theory prediction, Eq. (40). The enhance- 
ment of/~p for small clusters is not predicted by Tolman's analysis, since it 
reflects fluctuations of the cluster from its equilibrium shape. 

In addition to studying the properties of isolated clusters, we may 
apply the scaling theory to the calculation of the cluster size distribution in 
a liquid-vapor system. We consider here the square lattice gas studied in 
the Monte Carlo simulations of Binder and Kalos. (18) The system consists 
of a fixed number of particles, P, on a lattice of N sites. In the simulations, 
P, N, and T are such that the equilibrium state consists of a single large 
cluster of p* particles surrounded by a vapor of monomers and small 
clusters. If P/N<< 1 we may, to good approximation, neglect excluded 
volume effects. Then the canonical partition function may be expressed as 
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a sum of products of cluster partition functions 

( g Z n ) N .  
Q ( N , P , T )  = ~_, ~., . . .  ~ ,  1-I - -  (47) 

N 1 N 2 Np n gn! 

N1, is the number of p-mers in the system, and the sum is restricted by the 
condition ~l,  PNv = P. In evaluating Q we use exact series expansions to 
evaluate the partition functions of small clusters, and scaling theory for 
p />  20. For P = 120, N = 3600, and T* = 1/3, Binder and Kalos found 
( p * )  ~ 102 and ( N ] )  ---- 12, while the scaling theory predicts ( p * )  = 105.6 
and ( N 1 ) =  10.6. The scaling theory predictions are rather insensitive to 
small changes in the scaling parameters. 

Binder and Kalos were also able to estimate the derivative of the 
surface free energy with respect to cluster size. Using the scaling theory, we 
compute 

OF~ s 
a/O 1 - -  Eft- l )  

Theory and experiment are compared in Fig. 4. The scaling theory is seen 
to be in excellent agreement with the data, while the capillarity approxima- 

kBT ap IT 

1 

.5 

10 
I I I I I 

20 50 100 200 500 
P 

Fig. 4. (kBT)- l(OF;/ap)r vs.p. Dots are from simulation of Binder and Kalos, Ref. 18. The 
solid line is the scaling theory prediction, and the dashed line is obtained using the capillarity 
approximation. 
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tion is clearly wrong. [It must be noted, however, that the capillarity 
approximation fails in part because the surface tension of a plane (10) 
interface is employed in the calculation; the surface tension is greater for 
other orientations.] 
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APPENDIX A: INEQUALITIES FOR Zp AND op,~ 

From Eqs. (1) and (2) we have that 

: E (M) 
X,X' 

N(X) = p ,  N(X')=p' 

Now for each pair {X, X'} in the sum we can construct a cluster configura- 
tion X" with 12 + p' points and k(X) + k(X') + 1 lines as follows. Let x be 
the point in X furthest to the right and lowest in X, and let x' be the point 
furthest to the left and highest in X'. To form X", place x immediately to 
the left of x', and join these points by a line: 

i i  
x l i x ,  . . . . .  

X 

X, 

For each pair (X,X'} we obtain a distinct X". Thus there is a 1 : 1 
correspondence between terms in the sum Eq. (A2) and a subset of the 
terms in Zp+p,. (For p + p ' ) 4  there are configurations in Zp+ e, which 
cannot be constructed from { X, X') pairs.) Moreover, the term X" in Zp +p, 
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corresponding to {X,X'} in ZpZp, is multiplied by an additional factor of 
>/ 1. Hence 

so that 

Zl, Z (A2) 

(2p)-qnZ2p >1 p-llnZp (A3) 

Using a Peierls argument (23) one may place a constant upper bound on 
p-llnZp. For instance, for the square lattice Penrose and Lebowitz r 
showed that 

p - l l n  G < 2(ln3 + c/kBT ) (A4) 

Equations (A3) and (A4) imply that l im,~(2np) - ]ln Z2~ exists. 
Our construction generates a 1 : 1 correspondence between the set of 

pairs of cluster configurations (one member havingp particles and k bonds, 
the other p'  and k'), and a subset of the configurations with p + p' particles 
and k + k' + I bonds. Thus 

ae+e,,k+ 1/> op,k,oe,, -k' 
k' 

and so 

o2e,k/> trl,,k'Op,k-,~'- l 

which is Eq. (8), and, with a simple rearrangement, gives Eq. (5). 

(A5) 

APPENDIX B: MONTE CARLO CLUSTER GENERATION 

The Monte Carlo scheme generates realizations of cluster configura- 
tions. If (x)  is the set ofp  points in a cluster configuration C, (x E (x} ~ x 

Z d, and 0 ~ (x)), then a realization of C is an ordering of these points, 
i.e., the order in which these lattice sites are occupied in the cluster 
generation process. Thus 0 is always first in the realization, and the second 
point is one of the nearest neighbors of 0. 

The outcome of the cluster generation process is determined by two 
kinds of random events. One is the occupation, each independently and 
with probability z, of sites adjacent to a certain occupied site, called the 
"testing site." (The neighbors of this site are always tested in a fixed order, 
e.g., counterclockwise, starting with the point directly below the testing 
site.) The testing site is itself chosen at random from the set of occupied 
sites which have not yet served as the testing site. Thus there are in general 
several possible realizations of a given cluster configuration, i.e., several 
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possible sequences of testing sites which lead to the same configuration. For 
instance, there are two possible realizations of the configuration 

(The circled point is 0.) After testing the neighbors of 0, either (1, 0) (case 
A), or (0, 1) (case B) may be chosen as the next testing site. Note that the 
number of unoccupied sites, u, is different in the two realizations. In case B 
two of the neighbors of the testing site (0, 1) remain untested since the 
growth process terminates once p (in this case 4) sites have been occupied. 

0 0 l 
O 0 0 

A B 

(An open circle denotes a site tested and found unoccupied.) Given that 
some four-particle cluster is realized, the probability that realization (A) 
occurs is 

P ( A )  = (1//2)(1 - z ) 4 / s  e ( r )  
r 

and the probability that (B) occurs is 

P ( B )  = (1/2)(1 - z ) 2 / ~ , P ( r )  
r 

The factor of 1/2 represents the fact that (0, 1) and (1, 0) are equally likely 
to be chosen as the next testing site after 0. The relative probability of an 
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arbitrary realization r is 

(1 - z)U(r)II(1/nj) 
J 

where nj is the number of sites from which the j th  testing site is chosen. 
Given a cluster configuration we may find all its possible realizations 

by enumerating the different sequences of testing sites. A testing site 
sequence assigns labels 1,2 . . . . .  q (q < p -  1) to certain points in C, 
subject to the following rules: 

(1) 0 is labeled "1." 
(2) If point x is labeled j ,  then one of the sites adjacent to x is labeled 

i < j .  
(3) Every site is either labeled or is adjacent to a labeled site, and this 

condition is first satisfied when the label "q"  is assigned. 
Consider a process which randomly generates labelings of a certain C 

according to these rules. The probability of obtaining a particular realiza- 
tion r (C)  is 

q(r) 

I I  1/nj(r) 
j = 2  

Hence 
q(r) 

1"-[ 1/nj(r)= 1 (B1) 
r(C) j = 2  

The expectation of the sum ~r(c)W(r) is therefore 

E 2 w(r) = Y ~ P(r)(1 - z) -"(O= Y (B2) 
r( C) r( C) 

where Y depends on z, p, and the total number of Monte Carlo trials. Each 
translationally nonequivalent cluster configuration can occur in p equiva- 
lent ways (there are p choices for the particle which occupies 0). Thus 

E ~ w(r) = Yp ~ a ( T I / s ( T I = A o e ,  k (B31 
(all realizations of T(p,k) 
p-particle, k-bond 

configurations) 

APPENDIX C: ESTIMATION OF or(p) 

Sykes and Glen O~ have calculated or(p) = ~kOp, k for p < 16 for the 
triangle lattice, p < 19 for the square lattice, and p < 22 for the hexagon 
lattice. Their Pad6 approximant analysis indicates that asymptotically 

e~ (C1) or(p) "-~ B pX 
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with X"~ 1. This asymptotic behavior implies that the ratios of successive 
o r ( p )  values are well-approximated by 

aT(P) 
--  e~ - (C2) t~ -- Or-(-fi~ 1) "p ! 

To extrapolate o r ( p )  for the triangle and hexagon lattices we use Eq. (C2) 
with X = 1. This formula is accurate to within 0.1% for the last three exactly 
known ratios. For the square lattice we find a better fit ( <  0.03% error for 
last four ratios) if we modify Eq. (C2) to 

top----- e~ - 1 / ( p  + 0.85)] (C3) 

Eqs. (C2) and (C3) are used in conjunction with the following results from 
Ref. (20): 

a = 1.646 _+ 0.006 1 
a T (16) = 4 474 080 844 / triangle lattice 

o = 1.401 + 0.005 
a T (19) = 5 940 738 676 ) square lattice 

o = 1.112 _+ 0.007 ) 
o T (22) = 728 445 773.51 hexagon lattice 
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